Products of Skeletons of Finite Distributive Lattices
نویسنده
چکیده
We prove that the skeleton of a product of finitely many finite distributive lattices is isomorphic to the product of skeletons of its factors. Thus, it is possible to construct finite distributive lattices with a given directly reducible skeleton by reducing the problem to the skeleton factors. Although not all possible lattices can be obtained this way, we show that it works for the smallest distributive lattice with the skeleton being a product of H-irreducible lattices.
منابع مشابه
FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملExponents of Finite Simple Lattices
In the late 1930's Garrett Birkhoff [3] pioneered the theory of distributive lattices. An important component in this theory is the concept of exponentiation of lattices [4]: for a lattice L and a partially ordered set P let L denote the set of all order-preserving maps of P to L partially ordered b y / ^ g if and only if/(;c) ^ g(x) for each x e P (see Figure 1). Indeed, If is a lattice. This ...
متن کاملDistributive Lattices with a given Skeleton
We present a construction of finite distributive lattices with a given skeleton. In the case of an H-irreducible skeleton K the construction provides all finite distributive lattices based on K, in particular the minimal one.
متن کامل